248 research outputs found

    Extrasolar planets and brown dwarfs around A-F type stars. II. A planet found with ELODIE around the F6V star HD 33564

    Full text link
    We present here the detection of a planet orbiting around the F6V star HD 33564. The radial velocity measurements, obtained with the ELODIE echelle spectrograph at the Haute-Provence Observatory, show a variation with a period of 388 days. Assuming a primary mass of 1.25 Mo, the best Keplerian fit to the data leads to a minimum mass of 9.1 MJup for the companion.Comment: 5 pages. Final version, accepted for publication (A&A). Some Spitzer results on HD33564 (taken this year; not yet published), finally show that the detection of IR excess around this star (by IRAS) is spuriou

    Line-profile tomography of exoplanet transits I: The Doppler shadow of HD 189733b

    Full text link
    We present a direct method for isolating the component of the starlight blocked by a planet as it transits its host star, and apply it to spectra of the bright transiting planet HD 189733b. We model the global shape of the stellar cross-correlation function as the convolution of a limb-darkened rotation profile and a gaussian representing the Doppler core of the average photospheric line profile. The light blocked by the planet during the transit is a gaussian of the same intrinsic width, whose trajectory across the line profile yields a precise measure of the misalignment angle and an independent measure of v sin I. We show that even when v sin I is less than the width of the intrinsic line profile, the travelling Doppler "shadow" cast by the planet creates an identifiable distortion in the line profiles which is amenable to direct modelling. Direct measurement of the trajectory of the missing starlight yields self-consistent measures of the projected stellar rotation rate, the intrinsic width of the mean local photospheric line profile, the projected spin-orbit misalignment angle, and the system's centre-of-mass velocity. Combined with the photometric rotation period, the results give a geometrical measure of the stellar radius which agrees closely with values obtained from high-precision transit photometry if a small amount of differential rotation is present in the stellar photosphere.Comment: 8 pages, 5 figures, 2 tables; accepted by MNRA

    Deriving High-Precision Radial Velocities

    Full text link
    This chapter describes briefly the key aspects behind the derivation of precise radial velocities. I start by defining radial velocity precision in the context of astrophysics in general and exoplanet searches in particular. Next I discuss the different basic elements that constitute a spectrograph, and how these elements and overall technical choices impact on the derived radial velocity precision. Then I go on to discuss the different wavelength calibration and radial velocity calculation techniques, and how these are intimately related to the spectrograph's properties. I conclude by presenting some interesting examples of planets detected through radial velocity, and some of the new-generation instruments that will push the precision limit further.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Trumpler 20 - an old and rich open cluster

    Full text link
    We show that the open cluster Trumpler 20, contrary to the earlier findings, is actually an old Galactic open cluster. New CCD photometry and high-resolution spectroscopy are used to derive the main parameters of this cluster. At [Fe/H]=-0.11 for a single red giant star, the metallicity is slightly subsolar. The best fit to the color-magnitude diagrams is achieved using a 1.3 Gyr isochrone with convective overshoot. The cluster appears to have a significant reddening at E(B-V)=0.46 (for B0 spectral type), although for red giants this high reddening yields the color temperature exceeding the spectroscopic T_eff by about 200 K. Trumpler 20 is a very rich open cluster, containing at least 700 members brighter than M_V=+4. It may extend over the field-of-view available in our study at 20'x20'.Comment: 7 pages, 5 figures; accepted for publication in MNRA

    Altair's inclination from line profile analysis

    Full text link
    We present a detailed spectroscopic study of line broadening in the A7IV-V star Altair. In a wavelength region covering 690AA we reconstruct the overall broadening profile taking into account more than 650 spectral lines. From the broadening profile we determine the projected rotational velocity vsini, derive an upper limit for the equatorial velocity v from the shape of the profile and search for signatures of differential rotation. Our redetermined value of vsini is (227 +-11)km/s. Measuring the first two zeros of the Fourier transformed broadening profile yield no signatures of differential rotation. We derive that Altair is seen under an inclination angle higher than i=68deg and it rotates at v<245km/s or slower than 53% of breakup velocity on a 1sigma level.Comment: A&A, accepte

    Observational constraints for Lithium depletion before the RGB

    Full text link
    Precise Li abundances are determined for 54 giant stars mostly evolving across the Hertzsprung gap. We combine these data with rotational velocity and with information related to the deepening of the convective zone of the stars to analyse their link to Li dilution in the referred spectral region. A sudden decline in Li abundance paralleling the one already established in rotation is quite clear. Following similar results for other stellar luminosity classes and spectral regions, there is no linear relation between Li abundance and rotation, in spite of the fact that most of the fast rotators present high Li content. The effects of convection in driving the Li dilution is also quite clear. Stars with high Li content are mostly those with an undeveloped convective zone, whereas stars with a developed convective zone present clear sign of Li dilution.Comment: 5 pages, 4 figures. accepted for publicatio

    No evidence of a hot Jupiter around HD 188753 A

    Get PDF
    The discovery of a short-period giant planet (a hot Jupiter) around the primary component of the triple star system HD 188753 has often been considered as an important observational evidence and as a serious challenge to planet-formation theories. Following this discovery, we monitored HD 188753 during one year to better characterize the planetary orbit and the feasibility of planet searches in close binaries and multiple star systems. We obtained Doppler measurements of HD 188753 with the ELODIE spectrograph at the Observatoire de Haute-Provence. We then extracted radial velocities for the two brightest components of the system using our multi-order, two-dimensional correlation algorithm, TODCOR. Our observations and analysis do not confirm the existence of the short-period giant planet previously reported around HD 188753 A. Monte Carlo simulations show that we had both the precision and the temporal sampling required to detect a planetary signal like the one quoted. From our failure to detect the presumed planet around HD 188753 A and from the available data on HD 188753, we conclude that there is currently no convincing evidence of a close-in giant planet around HD 188753 A.Comment: 8 pages, 3 figures, accepted for publication in A&A. Corrected typos and minor mistake

    The Baade-Wesselink p-factor applicable to LMC Cepheids

    Full text link
    Context. Recent observations of LMC Cepheids bring new constraints on the slope of the period-projection factor relation (hereafter Pp relation) that is currently used in the Baade-Wesselink (hereafter BW) method of distance determination. The discrepancy between observations and theoretical analysis is particularly significant for short period Cepheids Aims. We investigate three physical effects that might possibly explain this discrepancy: (1) the spectroscopic S/N that is systematically lower for LMC Cepheids (around 10) compared to Galactic ones (up to 300), (2) the impact of the metallicity on the dynamical structure of LMC Cepheids, and (3) the combination of infrared photometry/interferometry with optical spectroscopy. Methods. To study the S/N we use a very simple toy model of Cepheids. The impact of metallicity on the projection factor is based on the hydrodynamical model of delta Cep already described in previous studies. This model is also used to derive the position of the optical versus infrared photospheric layers. Results. We find no significant effect of S/N, metallicity, and optical-versus-infrared observations on the Pp relation. Conclusions. The Pp relation of Cepheids in the LMC does not differ from the Galactic relation. This allows its universal application to determine distances to extragalactic Cepheids via BW analysis.Comment: accepted in A&A LETTER

    HD 34700: A new T Tauri double-lined spectroscopic binary

    Full text link
    We find the star HD 34700 to be a double-lined spectroscopic binary. We also identify it as a weak-line T Tauri object The spectra of both components are very similar and both show the Li I feature at 6708 \AA. Strong arguments in favour of the binary nature of the star as opposed to other possibilities are offered. It is very likely that the companion is also a T Tauri star of similar mass. A projected rotational velocity, vvsinii, of 25 and 23 km/s1^{-1} has been estimated for the blue and red components. We present a list of the lines identified and the radial velocities of the two components on three spectra obtained on consecutive nights.Comment: 4 pages, 5 figures, 2 tables (one electronic) Accepted for publication in A&A Letter

    New findings on the prototypical Of?p stars

    Full text link
    In recent years several in-depth investigations of the three Galactic Of?p stars were undertaken. These multiwavelength studies revealed the peculiar properties of these objects (in the X-rays as well as in the optical): magnetic fields, periodic line profile variations, recurrent photometric changes. However, many questions remain unsolved. To clarify some of the properties of the Of?p stars, we have continued their monitoring. A new XMM observation and two new optical datasets were obtained. Additional information for the prototypical Of?p trio has been found. HD108 has now reached its quiescent, minimum-emission state, for the first time in 50--60yrs. The echelle spectra of HD148937 confirm the presence of the 7d variations in the Balmer lines and reveal similar periodic variations (though of lower amplitudes) in the HeI5876 and HeII4686 lines, underlining its similarities with the other two prototypical Of?p stars. The new XMM observation of HD191612 was taken at the same phase in the line modulation cycle but at a different orbital phase as previous data. It clearly shows that the X-ray emission of HD191612 is modulated by the 538d period and not the orbital period of 1542d - it is thus not of colliding-wind origin and the phenomenon responsible for the optical changes appears also at work in the high-energy domain. There are however problems: our MHD simulations of the wind magnetic confinement predict both a harder X-ray flux of a much larger strength than what is observed (the modeled DEM peaks at 30-40MK, whereas the observed one peaks at 2MK) and narrow lines (hot gas moving with velocities of 100--200km/s, whereras the observed FWHM is ~2000km/s).Comment: 10 pages, 8 figures (2 in jpg), accepted for publication by A&
    corecore